Delineating the effect of demethylating agent 5-aza-2′-deoxycytidine on human Caco-2 colonic carcinoma cells
نویسندگان
چکیده
Aberrant epigenetic changes are known to contribute to various phases of tumor development. The gene function loss caused by aberrant methylation is analogous to genetic mutations. Unlike genetic mutations, epigenetic alterations can be reversed. 5-Aza-2'-deoxycytidine (5-aza-CdR) has been approved by the Food and Drug Administration for the treatment of certain types of cancer, such as MDS and leukemia. The aim of the present study was to determine whether 5-aza-CdR has the potential to be used in the treatment of colon cancer using a human Caco-2 colonic carcinoma cell line. The effect of 5-aza-CdR on cell proliferation, cell cycle, apoptosis and reversal of aberrant methylation of the Ras association domain family 1A (RASSF1A) gene was also examined. The 5-aza-CdR was prepared at different concentrations in sterile tri-distilled water at 0.4, 1.6, 6.4, 25.6 and 102.4 µmol/l and employed to treat the human Caco-2 colonic carcinoma cells. An MTT assay was used to detect the effect of 5-aza-CdR on cell proliferation. Flow cytometry was used to examine the cell cycle and apoptosis. The RASSF1A mRNA transcript level was examined by reverse transcription-polymerase chain reaction. The results showed that 5-aza-CdR inhibited the proliferation of Caco-2 cells in a time- and concentration-dependent manner (p<0.01). The 5-aza-CdR treatment affected the cell cycle and caused accumulation of cells in the G0/G1 phase and this effect was concentration-dependent (p<0.05). 5-aza-CdR treatment caused an increase in the number of cells undergoing apoptosis and reactivated the RASSF1A tumor suppressor gene that was silenced by hypermethylation in Caco-2 cells. In conclusion, 5-aza-CdR inhibited growth and promoted apoptosis in Caco-2 cells by upregulating the epigenetically silenced tumor suppressor RASSF1A gene.
منابع مشابه
Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملThe combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines
BACKGROUND The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon a...
متن کاملHDAC Inhibitors Act with 5-aza-2′-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells
5-Aza-2'-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell prolifera...
متن کاملSilencing of mouse Aprt is a gradual process in differentiated cells.
Mouse Aprt constructs that are highly susceptible to DNA methylation-associated inactivation in embryonal carcinoma cells were transfected into differentiated cells, where they were expressed. Construct silencing was induced by either whole-cell fusion of the expressing differentiated cells with embryonal carcinoma cells or by treatment of the differentiated cells with the DNA demethylating age...
متن کاملSynergistic activity of everolimus and 5‐aza‐2′‐deoxycytidine in medullary thyroid carcinoma cell lines
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo- and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5-aza-2'-deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ-CRC-1 and TT). This c...
متن کامل